5,

d Normal Python
N

B
HERZRZ
2025

Space for next page =

Contents

Tools for interactive analysis

Help and Documentation
Magic Commands
IO History

Shell Command

Not covered in this lecture

Errors and Debugging

= Timing and Profiling

This part: tools for interactive analysis
= Jupyter and IPython features

= Useful magic commands
= speed up common tasks in creating and using data
science code.

» Features of the notebook

» useful for understanding data and sharing results

Three modes of working

= [Python shell for trying out short sequences of commands

= Jupyter Notebook for longer interactive analysis and for
sharing content with others

= interactive development environments (IDEs) like Emacs or

VSCode for creating reusable Python packages

This course: IPython and Jupyter

inching the IPython Shell

1g ipython onthe command line

on 3.11.4 | packaged by conda-forge | (main, Jun 10 2023, 17:59:51) [MSC v.1935 64 bit (AM
copyright credits’' or 'license’ for more information
on 8.14.0 -- An enhanced Interactive Python. Type '?' for help

ipython

. exit

Launching the Jupyter Notebook

The Jupyter Notebook is a browser-based graphical interface to
the IPython shell.

$ jupyter lab

= DO NOT enter the $ sign in the terminal.
= DO NOT close the terminal window while the notebook is

running.
Features:

» formatted text

= static and dynamic visualizations

= mathematical equations

? Difference between IPython and Jupyter notebook?

= Graphical interface to the IPython shell

Jupyter Features

Help and Documentation in IPython
Accessing Documentation with ?

Every Python object contains a reference to a string, known as
a docstring

= Concise summary of the object and how to use it.

= Built-in help function

Demo

In [1 help(len
Help on built-in function len in module builtins

len(obj, /
Return the number of items in a container

A shorthand for accessing this documentation

In [2 len?
Signature: len(obj, /
Docstring: Return the number of items in a container

Type builtin_function_or_method

This notation works for just about anything, including object
methods:

In [3]: L =1[1, 2, 3

In [4 L.insert?

Signature: L.insert(index, object, /
Docstring: Insert object before index
Type builtin_function_or_method

Or even objects themselves, with the documentation from their

type:
In [5 L?
Type list
String form 1, 2, 3
Length 3
Docstring

Built-in mutable sequence

If no argument is given, the constructor creates a new empty list
The argument must be an iterable if specified

? Difference between function help and question mark ?

= help isapython feature. ? is aIPython feature.

Exploring Modules with Tab Completion

Tab completion of object contents

In [10 L.<TAB>
append count insert reverse
clear extend pop sort
copy index remove

To narrow down the list
= type the first character or several characters

Demo

In [10 L.c<TAB>
clear count

copy

In [10 L.co<TAB>
copy count

If there is only a single option
= pressing the Tab key will complete the line for you.

Demo: L.count:

In [10 L.cou<TAB>

Tab completion when importing

Tab completion is also useful when importing objects from
packages.

Demo: imports in the itertools package that start with co :

In [10]: from itertools import co<TAB>
combinations compress

To see which imports are available on your system

Demo

In [10 import <TAB>

abc anyio
activate_this appdirs
aifc appnope
antigravity argon2

In [10 import h<TAB>
hashlib html
heapq http
hmac

[Python Magic
Commands

= Adds on top of the normal Python syntax: magic commands

= Prefixed by the % character

Magic commands come in two flavors:

= Jine magics, which are denoted by a single % prefix

= cell magics, which are denoted by a double %% prefix

Running External Code: %run

Demo: create a myscript.py file with the following contents:

def square(x
square a number
return x *x 2

for N in range(1, 4

print(f"{N} squared is {square(N)}"

You can execute this from your IPython session as follows:

In [6]: %run myscript.py
1 squared is 1
2 squared is &4
3 squared is 9

Any functions defined within it are available for use in your
IPython session:

In |7 square(5
Outl[7 25

Timing Code Execution: %timeit

In [8 %timeit L n *x 2 for n in range(1000
430 ps + 3.21 ps per loop (mean + std. dev. of 7 runs, 1000 loops each

= Perform multiple runs in order to attain more robust results.

For multiline statements, adding a second % sign

= For example, here's the equivalent construction with a for
loop:
In [9]: %%timeit
L
for n in range(1000

L.append(n ** 2

484 ps + 5.67 ps per loop (mean * std. dev. of 7 runs, 1000 loops each

= List comprehensions are about 10% faster than the

equivalent for loop construction in this case

Help on Magic Functions: ?, %magic,
and %lsmagic

To read the documentation of the %timeit magic function,
simply type this:

In [10 %timeit?

All available magic functions, including some examples

In [11]: %magic

For a quick and simple list of all available magic functions

In [12 %Llsmagic

Input and Output
History

IPython creates some Python variables called In and oOut

= Automatically updated to reflect this history:

import math
math.sin(2

math.cos(2

In [4 In

out|[import math math.sin(2) math.cos(2) In
In [5 Out

Outl>5

2: 0.9092974268256817
3: -0.4161468365471424
4 import math math.sin(2) math.cos(2) In Oout

In [1] can refer to the first command:

In [6 print(In[1
import math

The oOut objectis not a list

= but a dictionary mapping input numbers to their outputs (if

any):

In [7 print(Out[2
0.9092974268256817

Not all operations have outputs:

= import statements and print statements don't affect the

output.

= Any command that returns None is not added to Out .

Demo: let's check the sum of sin(2) *%* 2 and cos(2) *x 2
using the previously computed results:

In |8 OQut[2] **x 2 + Out[3] **x 2
Out[8 1.0

Underscore Shortcuts and Previous
Outputs

Shortcut for accessing previous output:

= thevariable _ (i.e., a single underscore)

In [9 print(_
1.0

IPython takes this a bit further

= Double underscore to access the second-to-last output
= Triple underscore to access the third-to-last output (skipping

any commands with no output):

In [10 print(__
-0.4161468365471424

In [11 print(__
0.9092974268256817

= Shorthand for out[X] is _X

= Asingle underscore followed by the line number:

In [12 Out|2
Out[12 0.9092974268256817

In [13]: _2
Out[13]: 0.9092974268256817

Suppressing Output

Add a semicolon to the end of the line:

In [13]: math.sin(2) + math.cos(2);

The result is computed silently

= Qutput is neither displayed

= Nor stored in the Out dictionary:

In [15 14 in Out
Out[15 False

Coding exercises

Refresh your fingers.

Task 1: Fibonacci sequence
The Fibonacci numbers may be defined by
Fo=0,F1 =1
and
F,=F, 1+ F,

Write a function fib(n) to generate the nth Fibonacci number
Fy

= Forexample, fib(0) = 0, fib(19) = 4181

For loop Recursion

def fib(n def fib2(n
ifn=o0 ifn=20
return 0 return 0
elif n = 1 elif n = 1
return 1 return 1
else else
a. b=0 1 return fib2(n-2) + fib2(n-1

for _ in range(2, n+1
a, b b, a+b
return b

Task 2: Expected income

The income of a graduate at graduation is determined by their
effort e in college and the economic situation s.

= In times of economic prosperity, they receive an income

bonus

= While in times of economic downturn, they receive an

income penalty.
The equation for income can be expressed as
I%(e) = ae + E[s],

where a = 1 represents the marginal payoff of effort, with
probabilities Pr(s = 100) = 0.7 and Pr(s = —100) = 0.3.

Find IZ (5000)

def expected_income(h, pl=0.3, ph=0.7, alpha=1
expected_shock pl *x -100 + ph * 100
return alpha * h + expected_shock

What if
Pr(s = 200) = 0.1
Pr(s = 100) = 0.7
Pr(s = —100) = 0.2
Pr(s = —200) = 0.1

def expected_income2(h, states, probabilities, alpha
expected_shock = sum(s*p for (s, p) in zip(states, probabilities
return alphaxh + expected_shock

More IPython
Resources

Web Resources
= The IPython website

http://ipython.org/
http://nbviewer.jupyter.org/
https://github.com/jupyter/jupyter/wiki

Books
= Python for Data Analysis (O'Reilly)

http://shop.oreilly.com/product/0636920023784.do
https://www.packtpub.com/big-data-and-business-intelligence/learning-ipython-interactive-computing-and-data-visualization
https://www.packtpub.com/big-data-and-business-intelligence/learning-ipython-interactive-computing-and-data-visualization
https://www.packtpub.com/big-data-and-business-intelligence/ipython-interactive-computing-and-visualization-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/ipython-interactive-computing-and-visualization-cookbook

