
经济大数据与 Python 应用

Jupyter: Beyond Normal Python

陈洲
湘潭大学商学院

2025

Press Space for next page

Contents

Help and Documentation

Magic Commands

IO History

Shell Command

Not covered in this lecture

Errors and Debugging

Timing and Profiling

Tools for interactive analysis

This part: tools for interactive analysis
Jupyter and IPython features

Useful magic commands

speed up common tasks in creating and using data

science code.

Features of the notebook

useful for understanding data and sharing results

Three modes of working

IPython shell for trying out short sequences of commands

Jupyter Notebook for longer interactive analysis and for

sharing content with others

interactive development environments (IDEs) like Emacs or

VSCode for creating reusable Python packages

This course: IPython and Jupyter

unching the IPython Shell

ng ipython on the command line

ipython

on 3.11.4 | packaged by conda-forge | (main, Jun 10 2023, 17:59:51) [MSC v.1935 64 bit (AMD

'copyright', 'credits' or 'license' for more information

hon 8.14.0 -- An enhanced Interactive Python. Type '?' for help.

1]:

1]: exit

Launching the Jupyter Notebook

The Jupyter Notebook is a browser-based graphical interface to

the IPython shell.

DO NOT enter the $ sign in the terminal.

DO NOT close the terminal window while the notebook is

running.

Features:

formatted text

static and dynamic visualizations

mathematical equations

$ jupyter lab

 Difference between IPython and Jupyter notebook?

Graphical interface to the IPython shell

Jupyter Features

Help and Documentation in IPython
Accessing Documentation with ?

Every Python object contains a reference to a string, known as

a docstring

Concise summary of the object and how to use it.

Built-in help function

Demo

In [1]: help(len)

Help on built-in function len in module builtins:

len(obj, /)

 Return the number of items in a container.

A shorthand for accessing this documentation

In [2]: len?

Signature: len(obj, /)

Docstring: Return the number of items in a container.

Type: builtin_function_or_method

This notation works for just about anything, including object

methods:

In [3]: L = [1, 2, 3]

In [4]: L.insert?

Signature: L.insert(index, object, /)

Docstring: Insert object before index.

Type: builtin_function_or_method

Or even objects themselves, with the documentation from their

type:

In [5]: L?

Type: list

String form: [1, 2, 3]

Length: 3

Docstring:

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list.

The argument must be an iterable if specified.

 Difference between function help and question mark ?

help is a python feature. ? is a IPython feature.

Exploring Modules with Tab Completion

Tab completion of object contents

In [10]: L.<TAB>

 append() count insert reverse

 clear extend pop sort

 copy index remove

To narrow down the list

type the first character or several characters

Demo

In [10]: L.c<TAB>

 clear() count()

 copy()

In [10]: L.co<TAB>

 copy() count()

If there is only a single option

pressing the Tab key will complete the line for you.

Demo: L.count :

In [10]: L.cou<TAB>

Tab completion when importing

Tab completion is also useful when importing objects from

packages.

Demo: imports in the itertools package that start with co :

In [10]: from itertools import co<TAB>

 combinations() compress()

To see which imports are available on your system

Demo

In [10]: import <TAB>

 abc anyio

 activate_this appdirs

 aifc appnope

 antigravity argon2

In [10]: import h<TAB>

 hashlib html

 heapq http

 hmac

IPython Magic

Commands

Adds on top of the normal Python syntax: magic commands

Prefixed by the % character

Magic commands come in two flavors:

line magics, which are denoted by a single % prefix

cell magics, which are denoted by a double %% prefix

Running External Code: %run

Demo: create a myscript.py file with the following contents:

file: myscript.py

def square(x):

 """square a number"""

 return x ** 2

for N in range(1, 4):

 print(f"{N} squared is {square(N)}")

You can execute this from your IPython session as follows:

Any functions defined within it are available for use in your

IPython session:

In [6]: %run myscript.py

1 squared is 1

2 squared is 4

3 squared is 9

In [7]: square(5)

Out[7]: 25

Timing Code Execution: %timeit

Perform multiple runs in order to attain more robust results.

In [8]: %timeit L = [n ** 2 for n in range(1000)]

430 µs ± 3.21 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

For multiline statements, adding a second % sign

For example, here’s the equivalent construction with a for

loop:

List comprehensions are about 10% faster than the

equivalent for loop construction in this case

In [9]: %%timeit

 ...: L = []

 ...: for n in range(1000):

 ...: L.append(n ** 2)

 ...:

484 µs ± 5.67 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Help on Magic Functions: ?, %magic,
and %lsmagic

To read the documentation of the %timeit magic function,

simply type this:

In [10]: %timeit?

All available magic functions, including some examples

In [11]: %magic

For a quick and simple list of all available magic functions

In [12]: %lsmagic

Input and Output

History

IPython creates some Python variables called In and Out

Automatically updated to reflect this history:

import math

math.sin(2)

math.cos(2)

In [4]: In

Out[4]: ['', 'import math', 'math.sin(2)', 'math.cos(2)', 'In']

In [5]: Out

Out[5]:

{2: 0.9092974268256817,

 3: -0.4161468365471424,

 4: ['', 'import math', 'math.sin(2)', 'math.cos(2)', 'In', 'Out']}

In [1] can refer to the first command:

In [6]: print(In[1])

import math

The Out object is not a list

but a dictionary mapping input numbers to their outputs (if

any):

In [7]: print(Out[2])

0.9092974268256817

Not all operations have outputs:

import statements and print statements don’t affect the

output.

Any command that returns None is not added to Out .

Demo: let’s check the sum of sin(2) ** 2 and cos(2) ** 2

using the previously computed results:

In [8]: Out[2] ** 2 + Out[3] ** 2

Out[8]: 1.0

Underscore Shortcuts and Previous
Outputs

Shortcut for accessing previous output:

the variable _ (i.e., a single underscore)

In [9]: print(_)

1.0

IPython takes this a bit further

Double underscore to access the second-to-last output

Triple underscore to access the third-to-last output (skipping

any commands with no output):

In [10]: print(__)

-0.4161468365471424

In [11]: print(___)

0.9092974268256817

 Shorthand for Out[X] is _X

A single underscore followed by the line number:

In [12]: Out[2]

Out[12]: 0.9092974268256817

In [13]: _2

Out[13]: 0.9092974268256817

Suppressing Output

Add a semicolon to the end of the line:

In [13]: math.sin(2) + math.cos(2);

The result is computed silently

Output is neither displayed

Nor stored in the Out dictionary:

In [15]: 14 in Out

Out[15]: False

Coding exercises
Refresh your fingers.

Task 1: Fibonacci sequence

The Fibonacci numbers may be defined by

and

F ​ =0 0,F ​ =1 1

F ​ =n F ​ +n−1 F ​n−2

Write a function fib(n) to generate the nth Fibonacci number

For example, fib(0) = 0 , fib(19) = 4181

F ​n

For loop Recursion

def fib2(n):

 if n == 0:

 return 0

 elif n == 1:

 return 1

 else:

 return fib2(n-2) + fib2(n-1)

def fib(n):

 if n == 0:

 return 0

 elif n == 1:

 return 1

 else:

 a, b = 0, 1

 for _ in range(2, n+1):

 a, b = b, a + b

 return b

Task 2: Expected income

The income of a graduate at graduation is determined by their

effort in college and the economic situation .

In times of economic prosperity, they receive an income

bonus

While in times of economic downturn, they receive an

income penalty.

The equation for income can be expressed as

where represents the marginal payoff of effort, with

probabilities and .

Find

e s

I (e) =E αe + E[s],

α = 1
Pr(s = 100) = 0.7 Pr(s = −100) = 0.3

I (5000)E

What if

def expected_income(h, pl=0.3, ph=0.7, alpha=1):

 expected_shock = pl * -100 + ph * 100

 return alpha * h + expected_shock

Pr(s = 200) = 0.1
Pr(s = 100) = 0.7

Pr(s = −100) = 0.2
Pr(s = −200) = 0.1

def expected_income2(h, states, probabilities, alpha):

 expected_shock = sum(s*p for (s, p) in zip(states, probabilities))

 return alpha*h + expected_shock

More IPython

Resources

Web Resources
The IPython website

The nbviewer website

A curated collection of Jupyter notebooks

http://ipython.org/
http://nbviewer.jupyter.org/
https://github.com/jupyter/jupyter/wiki

Books
Python for Data Analysis (O’Reilly)

Learning IPython for Interactive Computing and Data

Visualization (Packt)

IPython Interactive Computing and Visualization Cookbook

(Packt)

http://shop.oreilly.com/product/0636920023784.do
https://www.packtpub.com/big-data-and-business-intelligence/learning-ipython-interactive-computing-and-data-visualization
https://www.packtpub.com/big-data-and-business-intelligence/learning-ipython-interactive-computing-and-data-visualization
https://www.packtpub.com/big-data-and-business-intelligence/ipython-interactive-computing-and-visualization-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/ipython-interactive-computing-and-visualization-cookbook

