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Introduction to

NumPy



Why Numpy

Datasets: fundamentally arrays of numbers.

NumPy (short for Numerical Python)

👨‍🎨Efficient storage

👷‍♀️manipulation of numerical arrays



Installation

Go to http://www.numpy.org/ and follow the installation

instructions found there.

$ conda install numpy

Import NumPy and double-check the version: Demo

http://www.numpy.org/


In terminal

Start jupyter notebook

In notebook

jupyter lab

import numpy

numpy.__version__



By convention, import NumPy using np  as an alias:

import numpy as np



Understanding

Data Types in

Python



A Python Integer Is More Than Just an
Integer

Overhead involved in storing an integer in Python

Analogy: 📦Mail package

PyObject_HEAD  is the part of the structure



A Python List Is More Than Just a List
Holds many Python objects.

L3 = [True, "2", 3.0, 4]

[type(item) for item in L3]



This flexibility comes at a 💲cost:

Each item in the list must contain its own type, reference

count, and other information.

In the special case that all variables are of the same type

much of this information is redundant



The difference between a dynamic-type list and a fixed-type

(NumPy-style) array



Fixed-type NumPy-style arrays are much more ✨efficient for

storing and manipulating data.



Creating Arrays from Python Lists

We’ll start with the standard NumPy import, under the alias

np :

Demo

Use np.array  to create arrays from Python lists:

import numpy as np

# Integer array

np.array([1, 4, 2, 5, 3])



NumPy arrays can only contain data of the ❗same type.

If the types do not match, NumPy will upcast them

according to its type promotion rules

Integers are upcast to floating point:

np.array([3.14, 4, 2, 3])



Explicitly set the data type of the resulting array

Use the dtype  keyword:

np.array([1, 2, 3, 4], dtype=np.float32)



NumPy arrays can be ✨ multidimensional

Initializing a multidimensional array using a list of lists:

The inner lists are treated as rows of the resulting two-

dimensional array.

# Nested lists result in multidimensional arrays

np.array([range(i, i + 3) for i in [2, 4, 6]])



Creating Arrays from Scratch

For larger arrays, it is more efficient

To create arrays from scratch using routines built into

NumPy.

Here are several examples:

# Create a length-10 integer array filled with 0s

np.zeros(10, dtype=int)

# Create a 3x5 floating-point array filled with 1s

np.ones((3, 5), dtype=float)

# Create a 3x5 array filled with 3.14

np.full((3, 5), 3.14)



✨ Number Series

# Create an array filled with a linear sequence

# starting at 0, ending at 20, stepping by 2

# (this is similar to the built-in range function)

np.arange(0, 20, 2)

# Create an array of five values evenly spaced between 0 and 1

np.linspace(0, 1, 5)



✨ Random Array

# Create a 3x3 array of uniformly distributed

# pseudorandom values between 0 and 1

np.random.random((3, 3))

# Create a 3x3 array of normally distributed pseudorandom

# values with mean 0 and standard deviation 1

np.random.normal(0, 1, (3, 3))

# Create a 3x3 array of pseudorandom integers in the interval [0, 10)

np.random.randint(0, 10, (3, 3))



✨ Special Matrix

# Create a 3x3 identity matrix

np.eye(3)

# Create an uninitialized array of three integers; the values will be

# whatever happens to already exist at that memory location

np.empty(3)



The Basics of

NumPy Arrays



Data manipulation in Python -> NumPy array ✨ manipulation:

Pandas Part 3 are built around the NumPy array

NumPy array manipulation

subarrays

split

reshape

join the arrays.



NumPy Array Attributes

NumPy’s random number generator

seed with a set value in order

ensure that the same random arrays are generated each

time this code is run:

import numpy as np

rng = np.random.default_rng(seed=1701)  # seed for reproducibility



Define random arrays of

One, two, and three dimensions.

# Return random integers from low (inclusive, 0) to high (exclusive)

x1 = rng.integers(10, size=6)  # one-dimensional array

x2 = rng.integers(10, size=(3, 4))  # two-dimensional array

x3 = rng.integers(10, size=(3, 4, 5))  # three-dimensional array



💪 Recall

How to generate random integers between 0 and 10 using

`np.random`.



Each array has attributes

ndim  (the number of dimensions)

shape  (the size of each dimension)

size  (the total size of the array)

dtype  (the type of each element):

print("x3 ndim: ", x3.ndim)

print("x3 shape:", x3.shape)

print("x3 size: ", x3.size)

print("dtype:   ", x3.dtype)



Array Indexing: Accessing Single
Elements

The  value (counting from zero) can be accessed by

specifying the desired index in square brackets

ith

x1

x1[0]

x1[4]



To index from the end of the array, you can use negative

indices:

x1[-1]

x1[-2]



Multidimensional array

using a comma-separated (row, column)  tuple:

x2

x2[0,0]

x2[2,0]

x2[2,-1]



Values can also be ✨ modified using any of the preceding

index notation:

x2[0, 0] = 12

x2



💪 Task
Generate a matrix  of integers (two-dimensional array) with

shape 

for element  at , 

m

(5, 5)

m ​ ∈ij m (i, j) m ​ =ij i ∗ j

m = np.zeros((5,5))

for i in range(5):

  for j in range(5):

    m[i,j] = i * j

m



Caution: NumPy arrays have a fixed type.

insert a floating-point value into an integer array

the value will be 👎 silently truncated



Array Slicing: Accessing Subarrays

Access subarrays with the slice notation

the colon ( : ) character.

Default values start=0 , stop=<size of dimension> ,

step=1 .

x[start:stop:step]

# Question

a = np.array([1,2,3])

a[0:2]



One-Dimensional Subarrays

x1

x1[:3]  # first three elements

x1[3:]  # elements after index 3

x1[1:4]  # middle subarray

x1[::2]  # every second element

x1[1::2]  # every second element, starting at index 1



❓ Question: negative step

x1[::-1]

x1[4::-2]



Multidimensional Subarrays

x2

x2[:2, :3]  # first two rows & three columns

x2[:3, ::2]  # three rows, every second column

x2[::-1, ::-1]  # all rows & columns, reversed



Accessing array rows and columns

Accessing single rows or columns of an array.

Single colon ( : ):

x2[:, 0]  # first column of x2

x2[0, :]  # first row of x2



The 👉 empty slice can be omitted for a more compact syntax:

x2[0]  # equivalent to x2[0, :]



Subarrays as ❎ No-Copy Views

NumPy array slices are returned as views

rather than copies of the array data.

print(x2)



Let’s extract a  subarray from this:2 × 2

x2_sub = x2[:2, :2]

print(x2_sub)



Now if we modify this subarray, we’ll see that the original array

is changed! Observe:

x2_sub[0, 0] = 99

print(x2_sub)

print(x2)



Creating Copies of Arrays

Explicitly copy the data within an array or a subarray.

copy  method:

x2_sub_copy = x2[:2, :2].copy()

print(x2_sub_copy)



If we now modify this subarray, the original array is not

touched:

x2_sub_copy[0, 0] = 42

print(x2_sub_copy)

print(x2)



💪 Task

Find all even numbers under 100 as a NumPy array.

numbers = np.arange(100)

numbers[::2]



Reshaping of Arrays

Put the numbers 1 through 9 in a  grid:

reshape  method will return a no-copy view of the initial

array.

3 × 3

grid = np.arange(1, 10).reshape(3, 3)

print(grid)



✨ One-dimensional array to row or column matrix

x = np.array([1, 2, 3])

x.reshape((1, 3))  # row vector via reshape

x.reshape((3, 1))  # column vector via reshape



Shorthand for this is to use 📑 np.newaxis  in the slicing

syntax:

x[np.newaxis, :]  # row vector via newaxis

x[:, np.newaxis]  # column vector via newaxis



Array Concatenation and Splitting
Combine multiple arrays into one

Split a single array into multiple arrays.



Concatenation of Arrays
np.concatenate

np.vstack

and np.hstack



np.concatenate  takes a tuple or list of arrays as its first

argument, as you can see here:

You can also concatenate more than two arrays at once:

x = np.array([1, 2, 3])

y = np.array([3, 2, 1])

np.concatenate([x, y])

z = np.array([99, 99, 99])

print(np.concatenate([x, y, z]))



And it can be used for two-dimensional arrays:

grid = np.array([[1, 2, 3],

                 [4, 5, 6]])

# concatenate along the first axis

np.concatenate([grid, grid])

# concatenate along the second axis (zero-indexed)

np.concatenate([grid, grid], axis=1)



Clearer:

np.vstack  (vertical stack)

np.hstack  (horizontal stack) functions:

# vertically stack the arrays

np.vstack([x, grid])

# horizontally stack the arrays

y = np.array([[99],

              [99]])

np.hstack([grid, y])



Splitting of Arrays
np.split

np.hsplit

np.vsplit

x = [1, 2, 3, 99, 99, 3, 2, 1]

x1, x2, x3 = np.split(x, [3, 5])

print(x1, x2, x3)



The related functions np.hsplit  and np.vsplit  are similar:

grid = np.arange(16).reshape((4, 4))

grid



upper, lower = np.vsplit(grid, [2])

print(upper)

print(lower)

left, right = np.hsplit(grid, [2])

print(left)

print(right)



💪 Task

Extract data for the third year (25 to 36)

Split data to years (12, 24, 36)

import numpy as np

# Monthly inflation rates for 4 years (48 months)

inflation_data = np.array([

    2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2,

    2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0, 0.9,

    0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0, -0.1, -0.2, -0.3,
    -0.4, -0.5, -0.6, -0.7, -0.8, -0.9, -1.0, -1.1, -1.2, -1.3, -1.4, -1.5
])

third_year_inflation_data = inflation_data[24:36]

np.split(inflation_data, [12, 24, 36])



Computation on

NumPy Arrays:

Universal

Functions



NumPy arrays can be very fast, or it can be very slow.

making it fast is to use vectorized operations

implemented through NumPy’s universal functions (ufuncs)



The Slowness of Loops

Situations where many small operations are being repeated

looping over arrays to operate on each element.



For example,

an array of values

compute the reciprocal of each.

nums = np.array([1, 2, 3])



A straightforward approach might look like this:

    for i in range(len(values)):

        output[i] = 1.0 / values[i]

import numpy as np

rng = np.random.default_rng(seed=1701)

def compute_reciprocals(values):

    output = np.empty(len(values))

    return output

values = rng.integers(1, 10, size=5)

compute_reciprocals(values)



Benchmark this with IPython’s %timeit  magic

big_array = rng.integers(1, 100, size=1000000)

%timeit compute_reciprocals(big_array)



Introducing Ufuncs

NumPy provides a vectorized operation.

Compare the results of the following two operations:

print(compute_reciprocals(values))

print(1.0 / values)



Looking at the execution time for our big array, we see that it

completes orders of magnitude faster than the Python loop:

Operate between two arrays:

%timeit (1.0 / big_array)

np.arange(5) / np.arange(1, 6)



Any time you see such a loop in a NumPy script

👉 replaced with a vectorized expression



Exploring NumPy’s Ufuncs
Array Arithmetic

x = np.arange(4)

print("x      =", x)

print("x + 5  =", x + 5)
print("x - 5  =", x - 5)

print("x * 2  =", x * 2)

print("x / 2  =", x / 2)

print("x // 2 =", x // 2)  # floor division



A **  operator for exponentiation,

A %  operator for modulus:

print("-x     = ", -x)
print("x ** 2 = ", x ** 2)

print("x % 2  = ", x % 2)



The standard order of operations is respected:

-(0.5*x + 1) ** 2



The following table lists the arithmetic operators implemented in NumPy:

Operator Equivalent ufunc Description

+ np.add Addition (e.g., 1 + 1 = 2 )

- np.subtract Subtraction (e.g., 3 - 2 = 1 )

- np.negative Unary negation (e.g., -2 )

* np.multiply Multiplication (e.g., 2 * 3 = 6 )

/ np.divide Division (e.g., 3 / 2 = 1.5 )

// np.floor_divide Floor division (e.g., 3 // 2 = 1 )

** np.power Exponentiation (e.g., 2 ** 3 = 8 )

% np.mod Modulus/remainder (e.g., 9 % 4 = 1 )



Absolute Value

Just as NumPy understands Python’s built-in arithmetic

operators,

it also understands Python’s built-in absolute value function:

The corresponding NumPy ufunc is np.absolute , which is also

available under the alias np.abs :

x = np.array([-2, -1, 0, 1, 2])
abs(x)

np.absolute(x)

np.abs(x)



This ufunc can also handle complex data, in which case it

returns the magnitude:

x = np.array([3 - 4j, 4 - 3j, 2 + 0j, 0 + 1j])
np.abs(x)



Trigonometric Functions

Start by defining an array of angles:

Now we can compute some trigonometric functions on these

values:

theta = np.linspace(0, np.pi, 3)

print("theta      = ", theta)

print("sin(theta) = ", np.sin(theta))

print("cos(theta) = ", np.cos(theta))

print("tan(theta) = ", np.tan(theta))



Inverse trigonometric functions are also available:

x = [-1, 0, 1]

print("x         = ", x)

print("arcsin(x) = ", np.arcsin(x))

print("arccos(x) = ", np.arccos(x))

print("arctan(x) = ", np.arctan(x))



Exponents and Logarithms

Other common operations available in NumPy ufuncs are the

exponentials:

x = [1, 2, 3]

print("x   =", x)

print("e^x =", np.exp(x))

print("2^x =", np.exp2(x))

print("3^x =", np.power(3., x))



The basic np.log  gives the natural logarithm

base-2 logarithm or the base-10 logarithm

x = [1, 2, 4, 10]

print("x        =", x)

print("ln(x)    =", np.log(x))

print("log2(x)  =", np.log2(x))

print("log10(x) =", np.log10(x))



Some specialized versions that are useful for maintaining

precision with very small input:

When x  is very small, these functions give more precise values

than if the raw np.log  or np.exp  were to be used.

x = [0, 0.001, 0.01, 0.1]

print("exp(x) - 1 =", np.expm1(x))

print("log(1 + x) =", np.log1p(x))



Aggregations: min, max, and
Everything in Between



A first step in exploring any dataset

Summary statistics

Mean and standard deviation

Median, minimum and maximum, quantiles, etc.

NumPy has fast built-in aggregation functions for working on

arrays; we’ll discuss and try out some of them here.



Summing the Values in an Array

Your 🍀lucky numbers

Or random numbers

import numpy as np

rng = np.random.default_rng()

L = rng.random(100)

sum(L)



NumPy’s sum  function, and the result is the same in the

simplest case:

NumPy’s version of the operation is computed much more

quickly:

np.sum(L)

big_array = rng.random(1000000)

%timeit sum(big_array)
%timeit np.sum(big_array)



Minimum and Maximum

Python has built-in min  and max  functions

min(big_array), max(big_array)



NumPy’s corresponding functions have similar syntax

again operate much more quickly:

%timeit min(big_array)
%timeit np.min(big_array)



A shorter syntax is to use methods of the array object itself:

Whenever possible, make sure

using the NumPy version of these aggregates when

operating on NumPy arrays!

print(big_array.min(), big_array.max(), big_array.sum())



Multidimensional Aggregates

Data stored in a two-dimensional array:

M = rng.integers(0, 10, (3, 4))

print(M)



NumPy aggregations will apply across all elements of a

multidimensional array:

M.sum()



Find the minimum value within each column by specifying

axis=0 :

M.min(axis=0)



Find the maximum value within each row:

M.max(axis=1)



The axis  keyword specifies the dimension of the array that

will be collapsed, rather than the dimension that will be

returned.

axis=0  means that axis 0 will be collapsed: for two-

dimensional arrays, values within each column will be

aggregated.





💪 Task: OLS

For a simple linear regression model

x = np.random.randint(0, 100, size=(100,))

y = np.random.randint(0, 100, size=(100,))

Get OLS estimator 

y = β ​ +0 β ​x +1 u

​ ​ =β̂1 ​(x ​− )∑ i x̄ 2
(x ​− )(y ​− ​)∑ i x̄ i ȳ



Task: Discrete choice (optional)

The optimal daily studying hours  for student type  is given

by

where .

Find the optimal daily studying hours h_star(c)  for students

of type .

h∗ c

h (c) =∗
​u(c,h), c ∈

h∈{0,1,…,8}
arg max {3, 5, 7}

u(c,h) = log(h) − 0.2(h − c)2

c



def u(c, h):

    return np.log(h+1) - 0.2*(h - c)**2

def h_star(c):

    h_array = np.arange(0, 9)

    max_h = None

    max_utility = -np.inf
    for h in h_array:

        utility = u(c, h)

        if utility > max_utility:
            max_h = h

            max_utility = utility

    return max_h

def h_star2(c):

    h_array = np.arange(0, 9)

    index = np.argmax(u(c, h_array)

    return h_array[index]



Computation on

Arrays:

Broadcasting



Introducing Broadcasting

Binary operations are performed on an element-by-element

basis:

import numpy as np

a = np.array([0, 1, 2])

b = np.array([5, 5, 5])

a + b



Arrays of different sizes — add a scalar (think of it as a zero-

dimensional array) to an array:

a + 5



Higher dimension.

Observe the result when we add a one-dimensional array to

a two-dimensional array:

a  is stretched, or broadcasted, across the second dimension in

order to match the shape of M

M = np.ones((3, 3))

M

M + a



Broadcasting of both arrays. Consider the following example:

a = np.arange(3)

b = np.arange(3)[:, np.newaxis]

print(a)

print(b)

a + b



Stretched or broadcasted one value to match the shape of the

other



Broadcasting Example 1

Suppose we want to add a two-dimensional array to a one-

dimensional array:

M = np.ones((2, 3))

a = np.arange(3)



M.shape  is (2, 3)

a.shape  is (3,)

The array a  has fewer dimensions, so we pad it on the left

with ones:

M.shape  remains (2, 3)

a.shape  becomes (1, 3)

The first dimension disagrees, so we stretch this dimension to

match:

M.shape  remains (2, 3)

a.shape  becomes (2, 3)



The shapes now match, and we see that the final shape will be

(2, 3) :\

M + a



Because the results match, these shapes are compatible. We

can see this here:

a + b



Broadcasting Example

Next, let’s take a look at an example in which the two arrays are

🙄not compatible:

M = np.ones((3, 2))

a = np.arange(3)



M.shape  is (3, 2)

a.shape  is (3,)

We must pad the shape of a  with ones:

M.shape  remains (3, 2)

a.shape  becomes (1, 3)

The first dimension of a  is then stretched to match that of M :

M.shape  remains (3, 2)

a.shape  becomes (3, 3)



Now we hit rule 3—the final shapes do not match, so these two

arrays are incompatible, as we can observe by attempting this

operation:

Centering an Array

M + a

rng = np.random.default_rng(seed=1701)

X = rng.random((10, 3))



Compute the mean of each column using the mean  aggregate

across the first dimension:

Xmean = X.mean(0)

Xmean



Center the X  array by subtracting the mean (this is a

broadcasting operation):

X_centered = X - Xmean



Check that the centered array has a mean near zero:

To within machine precision, the mean is now zero.

X_centered.mean(0)



Task

In a virtual world, the probability that a graduate in economics

finds a job with a salary of  is respectively

Given

Find the expected wage.

x

Pr(x = 3000) = 0.1
Pr(x = 5000) = 0.3
Pr(x = 7000) = 0.3
Pr(x = 9000) = 0.2

Pr(x = 20000) = 0.1

x = np.array([3000, 5000, 7000, 9000, 20000])

pr = np.array([0.1, 0.3, 0.3, 0.2, 0.1])



Task

Multiplication table

1x1=1

2x1=2 2x2=4

3x1=3 3x2=6 3x3=9

4x1=4 4x2=8 4x3=12 4x4=16

5x1=5 5x2=10 5x3=15 5x4=20 5x5=25

6x1=6 6x2=12 6x3=18 6x4=24 6x5=30 6x6=36

7x1=7 7x2=14 7x3=21 7x4=28 7x5=35 7x6=42 7x7=49

8x1=8 8x2=16 8x3=24 8x4=32 8x5=40 8x6=48 8x7=56 8x8=64

9x1=9 9x2=18 9x3=27 9x4=36 9x5=45 9x6=54 9x7=63 9x8=72 9x9=81



Comparisons,

Masks, and

Boolean Logic



Comparison Operators as Ufuncs

Computation on NumPy Arrays: Universal Functions introduced

ufuncs

+ , - , * , / : element-wise operations.

<  and >  as element-wise ufuncs.

The result of these comparison: Boolean array.



x = np.array([1, 2, 3, 4, 5])

x < 3  # less than
x > 3  # greater than
x <= 3  # less than or equal
x >= 3  # greater than or equal
x != 3  # not equal

x == 3  # equal



It is also possible to do an element-wise comparison of two

arrays, and to include compound expressions:

(2 * x) == (x ** 2)



Just as in the case of arithmetic ufuncs, these will work on

arrays of any size and shape. Here is a two-dimensional

example:

rng = np.random.default_rng(seed=1701)

x = rng.integers(10, size=(3, 4))

x

x < 6



Working with Boolean Arrays

The two-dimensional array we created earlier:

print(x)



Counting Entries

To count the number of True  entries in a Boolean array,

np.count_nonzero  is useful:

False  is interpreted as 0 , and True  is interpreted as 1 :

# how many values less than 6?

np.count_nonzero(x < 6)

np.sum(x < 6)



The benefit of np.sum  is that this summation can be done

along rows or columns as well:

# how many values less than 6 in each row?

np.sum(x < 6, axis=1)



Checking whether any or all the values are True , we can use

(you guessed it) np.any  or np.all :

# are there any values greater than 8?

np.any(x > 8)

# are there any values less than zero?

np.any(x < 0)

# are all values less than 10?

np.all(x < 10)

# are all values equal to 6?

np.all(x == 6)



np.all  and np.any  can be used along particular axes as well.

# are all values in each row less than 8?

np.all(x < 8, axis=1)



Boolean Arrays as Masks
To select particular subsets of the data themselves.

Let’s return to our x  array from before:

x



Suppose we want an array of all values in the array that are less

than 5.

We can obtain a Boolean array for this condition

x < 5



To select these values from the array

a masking operation:

Al the values in positions at which the mask array is True s.

x[x < 5]



Using the Keywords and/or Versus
the Operators &  and |

and  and or  operate on the object as a whole

&  and |  operate on the elements within the object.

A = np.array([1, 0, 1, 0, 1, 0], dtype=bool)

B = np.array([1, 1, 1, 0, 1, 1], dtype=bool)

A | B



But if you use or  on these arrays it will try to evaluate the

truth or falsehood of the entire array object, which is not a well-

defined value:

# raise ValueError

A or B



Similarly, when evaluating a Boolean expression on a given

array, you should use |  or &  rather than or  or and :

x = np.arange(10)

(x > 4) & (x < 8)



Trying to evaluate the truth or falsehood of the entire array will

give the same ValueError  we saw previously:

# raise ValueError

(x > 4) and (x < 8)



Remember this:

and  and or  perform a single Boolean evaluation on an

entire object

while &  and |  perform multiple Boolean evaluations on

the content (the individual bits or bytes) of an object.

For Boolean NumPy arrays, the latter is nearly always the

desired operation



Fancy Indexing



Before: to access and modify portions of arrays

using simple indices (e.g., arr[0] ),

slices (e.g., arr[:5] )

and Boolean masks (e.g., arr[arr > 0] ).

In this chapter, another style of array indexing



Exploring Fancy Indexing

Fancy indexing

passing an array of indices to access multiple array elements

at once



For example, consider the following array:

import numpy as np

rng = np.random.default_rng(seed=1701)

x = rng.integers(100, size=10)

print(x)



Suppose we want to access three different elements

[x[3], x[7], x[2]]



Alternatively, we can pass a single list or array of indices to

obtain the same result:

ind = [3, 7, 4]

x[ind]



When using arrays of indices, the shape of the result reflects

the shape of the index arrays

ind = np.array([[3, 7],

                [4, 5]])

x[ind]



Fancy indexing also works in multiple dimensions. Consider the

following array:

X = np.arange(12).reshape((3, 4))

X



Like with standard indexing, the first index refers to the row,

and the second to the column:

Combined Indexing

Fancy indexing can be combined with the other indexing

schemes

For example, given the array X :

row = np.array([0, 1, 2])

col = np.array([2, 1, 3])

X[row, col]

print(X)



We can combine fancy and simple indices:

X[2, [2, 0, 1]]



To slicing several rows:

We can also combine fancy indexing with slicing:

X[1:, [2, 0, 1]]



x = np.arange(10)

i = np.array([2, 1, 8, 4])

x[i] = 99

print(x)



Task

Simulate a Gacha game with four different rarities: , , and

, each with the following probabilities:

Perform a simulation of  pulls

keeping track of the count for each rarity

999 99
9

Pr(999) = 0.01
Pr(99) = 0.10
Pr(9) = 0.89

100



Sorting Arrays



Fast Sorting in NumPy: np.sort and
np.argsort

The np.sort  function is analogous to Python’s built-in

sorted  function

efficiently return a sorted copy of an array:

import numpy as np

x = np.array([2, 1, 4, 3, 5])

np.sort(x)



Similarly to the sort  method of Python lists, you can also sort

an array in-place using the array sort  method:

x.sort()

print(x)



A related function is argsort

returns the indices of the sorted elements:

x = np.array([2, 1, 4, 3, 5])

i = np.argsort(x)

print(i)



The first element of this result gives the index of the smallest

element

the second value gives the index of the second smallest, and

so on.

These indices can then be used (via fancy indexing) to

construct the sorted array if desired:

x[i]



Sorting Along Rows or Columns

A useful feature of NumPy’s sorting algorithms is the ability to

sort along specific rows or columns

using the axis  argument. For example:

rng = np.random.default_rng(seed=42)

X = rng.integers(0, 10, (4, 6))

print(X)

# sort each column of X

np.sort(X, axis=0)

# sort each row of X

np.sort(X, axis=1)



Partial Sorts: Partitioning

To find the k smallest values in the array

the np.partition  function.

np.partition  takes an array and a number K

the result is a new array with the smallest K values to the left

of the partition and the remaining values to the right:

x = np.array([7, 2, 3, 1, 6, 5, 4])

np.partition(x, 3)



Notice that the first three values in the resulting array are the

three smallest in the array

the remaining array positions contain the remaining values.

Within the two partitions, the elements have arbitrary order.

Similarly to sorting, we can partition along an arbitrary axis of a

multidimensional array:

np.partition(X, 2, axis=1)



Task

GDP data for 5 countries (in billions USD)

Asian countries indicator

Top gdp among asian countries.

Top gdp among non-asian countries.

gdp_data = np.array([2500, 3000, 1500, 4000, 3500])

asian = np.array([1, 0, 0, 1 0)]



END


