经济大数据与 Python 应用 Introduction to NumPy

陈洲 湘潭大学商学院 2025

Press Space for next page \rightarrow

Contents

- Understanding Data Types
- The Basics of NumPy Arrays
- Computation on NumPy Arrays: Universal Functions
- Aggregations: min, max, and Everything in Between
- Computation on Arrays: Broadcasting
- Comparisons, Masks, and Boolean Logic
- Fancy Indexing
- Sorting Arrays

Introduction to

NumPy

Why Numpy

Datasets: fundamentally arrays of numbers.

NumPy (short for *Numerical Python*)

- Efficient storage
- manipulation of numerical arrays

Installation

Go to http://www.numpy.org/ and follow the installation instructions found there.

```
$ conda install numpy
```

Import NumPy and double-check the version: Demo

In terminal

Start jupyter notebook

jupyter lab

In notebook

import numpy
numpy.__version__

By convention, import NumPy using np as an alias:

import numpy as np

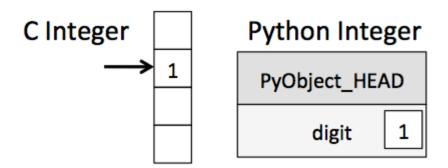
Understanding

Data Types in Python

A Python Integer Is More Than Just an Integer

- Overhead involved in storing an integer in Python
- Analogy:

 Mail package



PyObject_HEAD is the part of the structure

A Python List Is More Than Just a List

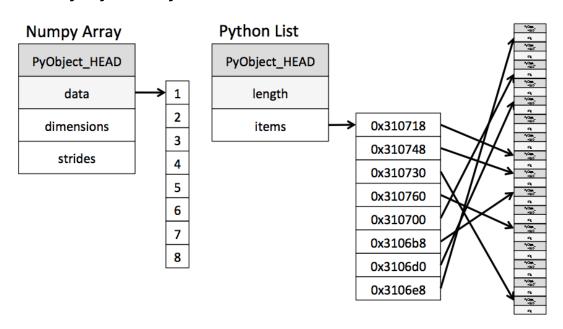
Holds many Python objects.

```
L3 = [True, "2", 3.0, 4]
[type(item) for item in L3]
```

This flexibility comes at a \$ cost:

- Each item in the list must contain its own type, reference count, and other information.
- In the special case that all variables are of the same type
 - much of this information is redundant

The difference between a dynamic-type list and a fixed-type (NumPy-style) array



Fixed-type NumPy-style arrays are much more *+ efficient for storing and manipulating data .

Creating Arrays from Python Lists

We'll start with the standard NumPy import, under the alias np:

Demo

```
import numpy as np
```

Use np.array to create arrays from Python lists:

```
# Integer array
np.array([1, 4, 2, 5, 3])
```

NumPy arrays can only contain data of the ! same type.

- If the types do not match, NumPy will upcast them according to its type promotion rules
- Integers are upcast to floating point:

```
np.array([3.14, 4, 2, 3])
```

Explicitly set the data type of the resulting array

Use the dtype keyword:

```
np.array([1, 2, 3, 4], dtype=np.float32)
```

NumPy arrays can be * multidimensional

Initializing a multidimensional array using a list of lists:

```
# Nested lists result in multidimensional arrays
np.array([range(i, i + 3) for i in [2, 4, 6]])
```

The inner lists are treated as rows of the resulting twodimensional array.

Creating Arrays from Scratch

For larger arrays, it is more efficient

 To create arrays from scratch using routines built into NumPy.

Here are several examples:

```
# Create a length-10 integer array filled with 0s
np.zeros(10, dtype=int)

# Create a 3×5 floating-point array filled with 1s
np.ones((3, 5), dtype=float)

# Create a 3×5 array filled with 3.14
np.full((3, 5), 3.14)
```

Number Series

```
# Create an array filled with a linear sequence
# starting at 0, ending at 20, stepping by 2
# (this is similar to the built-in range function)
np.arange(0, 20, 2)
```

 $\mbox{\#}$ Create an array of five values evenly spaced between 0 and 1 $np.linspace(0,\ 1,\ 5)$

Random Array

```
# Create a 3×3 array of uniformly distributed
# pseudorandom values between 0 and 1
np.random.random((3, 3))
```

```
# Create a 3×3 array of normally distributed pseudorandom
# values with mean 0 and standard deviation 1
np.random.normal(0, 1, (3, 3))
```

```
\# Create a 3×3 array of pseudorandom integers in the interval [0, 10) np.random.randint(0, 10, (3, 3))
```

Special Matrix

```
# Create a 3×3 identity matrix
np.eye(3)
```

Create an uninitialized array of three integers; the values will be
whatever happens to already exist at that memory location
np.empty(3)

The Basics of

NumPy Arrays

Data **manipulation** in Python -> NumPy array ** manipulation:

Pandas Part 3 are built around the NumPy array

NumPy array manipulation

- subarrays
- split
- reshape
- join the arrays.

NumPy Array Attributes

NumPy's random number generator

- seed with a set value in order
- ensure that the same random arrays are generated each time this code is run:

```
import numpy as np
rng = np.random.default_rng(seed=1701) # seed for reproducibility
```

Define random arrays of

• One, two, and three dimensions.

```
# Return random integers from low (inclusive, 0) to high (exclusive)
x1 = rng.integers(10, size=6)  # one-dimensional array
x2 = rng.integers(10, size=(3, 4))  # two-dimensional array
x3 = rng.integers(10, size=(3, 4, 5))  # three-dimensional array
```


`np.random`.

How to generate random integers between 0 and 10 using

Each array has attributes

- ndim (the number of dimensions)
- shape (the size of each dimension)
 - size (the total size of the array)
 - dtype (the type of each element):

```
print("x3 ndim: ", x3.ndim)
print("x3 shape:", x3.shape)
print("x3 size: ", x3.size)
print("dtype: ", x3.dtype)
```

Array Indexing: Accessing Single Elements

The i^{th} value (counting from zero) can be accessed by specifying the desired index in square brackets

```
x1
x1[0]
x1[4]
```

To index from the end of the array, you can use negative indices:

x1[-1] x1[-2]

Multidimensional array

using a comma-separated (row, column) tuple:

```
x2
x2[0,0]
x2[2,0]
x2[2,-1]
```

Values can also be * modified using any of the preceding index notation:

```
x2[0, 0] = 12
x2
```


Generate a matrix m of integers (two-dimensional array) with shape $(\mathbf{5},\mathbf{5})$

lacksquare for element $m_{ij} \in m$ at (i,j), $m_{ij} = i * j$

```
m = np.zeros((5,5))
for i in range(5):
   for j in range(5):
     m[i,j] = i * j
m
```

Caution: NumPy arrays have a fixed type.

insert a floating-point value into an integer array

• the value will be *p* silently truncated

Array Slicing: Accessing Subarrays

Access subarrays with the slice notation

• the colon (:) character.

```
Default values start=0, stop=<size of dimension>,
step=1.

# Question
a = np.array([1,2,3])
a[0:2]
```

One-Dimensional Subarrays

```
x1
x1[:3] # first three elements
x1[3:] # elements after index 3
x1[1:4] # middle subarray
x1[::2] # every second element
x1[1::2] # every second element, starting at index 1
```

? Question: negative step

```
x1[::-1]
x1[4::-2]
```

Multidimensional Subarrays

```
x2 x2[:2, :3] \ \# \ first \ two \ rows \ \delta \ three \ columns x2[:3, ::2] \ \# \ three \ rows, \ every \ second \ column x2[::-1, ::-1] \ \# \ all \ rows \ \delta \ columns, \ reversed
```

Accessing array rows and columns

Accessing single rows or columns of an array.

Single colon (:):

```
x2[:, 0] # first column of x2
x2[0, :] # first row of x2
```

The *empty slice* can be omitted for a more compact syntax:

x2[0] # equivalent to x2[0, :]

Subarrays as No-Copy Views

NumPy array slices are returned as views

• rather than *copies* of the array data.

print(x2)

Let's extract a 2×2 subarray from this:

```
x2_sub = x2[:2, :2]
print(x2_sub)
```

Now if we modify this subarray, we'll see that the original array is changed! Observe:

```
x2_sub[0, 0] = 99
print(x2_sub)
print(x2)
```

Creating Copies of Arrays

Explicitly copy the data within an array or a subarray.

copy method:

```
x2_sub_copy = x2[:2, :2].copy()
print(x2_sub_copy)
```

If we now modify this subarray, the original array is not touched:

```
x2_sub_copy[0, 0] = 42
print(x2_sub_copy)
print(x2)
```


Find all even numbers under 100 as a NumPy array.

```
numbers = np.arange(100)
numbers[::2]
```

Reshaping of Arrays

Put the numbers 1 through 9 in a 3×3 grid:

```
grid = np.arange(1, 10).reshape(3, 3)
print(grid)
```

reshape method will return a no-copy view of the initial array.

One-dimensional array to row or column matrix

```
x = np.array([1, 2, 3])
x.reshape((1, 3)) # row vector via reshape
x.reshape((3, 1)) # column vector via reshape
```

Shorthand for this is to use | np.newaxis in the slicing syntax:

```
x[np.newaxis, :] # row vector via newaxis
x[:, np.newaxis] # column vector via newaxis
```

Array Concatenation and Splitting

- Combine multiple arrays into one
- Split a single array into multiple arrays.

Concatenation of Arrays

- np.concatenate
- np.vstack
- and np.hstack

np.concatenate takes a tuple or list of arrays as its first argument, as you can see here:

```
x = np.array([1, 2, 3])
y = np.array([3, 2, 1])
np.concatenate([x, y])
```

You can also concatenate more than two arrays at once:

```
z = np.array([99, 99, 99])
print(np.concatenate([x, y, z]))
```

And it can be used for two-dimensional arrays:

Clearer:

- np.vstack (vertical stack)
- np.hstack (horizontal stack) functions:

Splitting of Arrays

- np.split
- np.hsplit
- np.vsplit

```
x = [1, 2, 3, 99, 99, 3, 2, 1]
x1, x2, x3 = np.split(x, [3, 5])
print(x1, x2, x3)
```

The related functions np.hsplit and np.vsplit are similar:

```
grid = np.arange(16).reshape((4, 4))
grid
```

```
upper, lower = np.vsplit(grid, [2])
print(upper)
print(lower)

left, right = np.hsplit(grid, [2])
print(left)
print(right)
```


Extract data for the third year (25 to 36)

```
third_year_inflation_data = inflation_data[24:36]
```

Split data to years (12, 24, 36)

```
np.split(inflation_data, [12, 24, 36])
```

Computation on NumPy Arrays: Universal Functions

NumPy arrays can be very fast, or it can be very slow.
 making it fast is to use vectorized operations
 implemented through NumPy's universal functions (ufuncs)

The Slowness of Loops

Situations where many small operations are being repeated

looping over arrays to operate on each element.

For example,

- an array of values
- compute the reciprocal of each.

```
nums = np.array([1, 2, 3])
```

A straightforward approach might look like this:

```
import numpy as np
rng = np.random.default_rng(seed=1701)

def compute_reciprocals(values):
    output = np.empty(len(values))
    for i in range(len(values)):
        output[i] = 1.0 / values[i]
    return output

values = rng.integers(1, 10, size=5)
compute_reciprocals(values)
```

Benchmark this with IPython's %timeit magic

```
big_array = rng.integers(1, 100, size=1000000)
%timeit compute_reciprocals(big_array)
```

Introducing Ufuncs

NumPy provides a vectorized operation.

Compare the results of the following two operations:

```
print(compute_reciprocals(values))
print(1.0 / values)
```

Looking at the execution time for our big array, we see that it completes orders of magnitude faster than the Python loop:

```
%timeit (1.0 / big_array)
```

Operate between two arrays:

```
np.arange(5) / np.arange(1, 6)
```

Any time you see such a *loop* in a NumPy script

replaced with a vectorized expression

Exploring NumPy's Ufuncs Array Arithmetic

```
x = np.arange(4)
print("x = ", x)
print("x + 5 = ", x + 5)
print("x - 5 = ", x - 5)
print("x * 2 = ", x * 2)
print("x / 2 = ", x / 2)
print("x // 2 = ", x // 2) # floor division
```

- A ** operator for exponentiation,
- A % operator for modulus:

```
print("-x = ", -x)
print("x ** 2 = ", x ** 2)
print("x % 2 = ", x % 2)
```

The standard order of operations is respected:

```
-(0.5*x + 1) ** 2
```

The following table lists the arithmetic operators implemented in NumPy:

Operator	Equivalent ufunc	Description
+	np.add	Addition (e.g., 1 + 1 = 2)
-	np.subtract	Subtraction (e.g., 3 - 2 = 1)
-	np.negative	Unary negation (e.g., -2)
*	np.multiply	Multiplication (e.g., 2 * 3 = 6)
/	np.divide	Division (e.g., 3 / 2 = 1.5)
//	np.floor_divide	Floor division (e.g., 3 // 2 = 1)
**	np.power	Exponentiation (e.g., 2 ** 3 = 8)
%	np.mod	Modulus/remainder (e.g., 9 % 4 = 1)

Absolute Value

Just as NumPy understands Python's built-in arithmetic operators,

• it also understands Python's built-in absolute value function:

```
x = np.array([-2, -1, 0, 1, 2])
abs(x)
```

The corresponding NumPy ufunc is np.absolute, which is also available under the alias np.abs:

```
np.absolute(x)
np.abs(x)
```

This ufunc can also handle complex data, in which case it returns the magnitude:

```
x = np.array([3 - 4j, 4 - 3j, 2 + 0j, 0 + 1j])

np.abs(x)
```

Trigonometric Functions

Start by defining an array of angles:

```
theta = np.linspace(0, np.pi, 3)
```

Now we can compute some trigonometric functions on these values:

```
print("theta = ", theta)
print("sin(theta) = ", np.sin(theta))
print("cos(theta) = ", np.cos(theta))
print("tan(theta) = ", np.tan(theta))
```

Inverse trigonometric functions are also available:

Exponents and Logarithms

Other common operations available in NumPy ufuncs are the exponentials:

```
x = [1, 2, 3]
print("x = ", x)
print("e^x = ", np.exp(x))
print("2^x = ", np.exp2(x))
print("3^x = ", np.power(3., x))
```

The basic np.log gives the natural logarithm

base-2 logarithm or the base-10 logarithm

```
x = [1, 2, 4, 10]
print("x = ", x)
print("ln(x) = ", np.log(x))
print("log2(x) = ", np.log2(x))
print("log10(x) = ", np.log10(x))
```

Some specialized versions that are useful for maintaining precision with very small input:

```
x = [0, 0.001, 0.01, 0.1]
print("exp(x) - 1 = ", np.expm1(x))
print("log(1 + x) = ", np.log1p(x))
```

When x is very small, these functions give more precise values than if the raw np.log or np.exp were to be used.

Everything in Between

Aggregations: min, max, and

A first step in exploring any dataset

- Summary statistics
- Mean and standard deviation
- Median, minimum and maximum, quantiles, etc.

NumPy has fast built-in aggregation functions for working on arrays; we'll discuss and try out some of them here.

Summing the Values in an Array

Your ♥ lucky numbers

Or random numbers

```
import numpy as np
rng = np.random.default_rng()

L = rng.random(100)
sum(L)
```

NumPy's sum function, and the result is the same in the simplest case:

```
np.sum(L)
```

NumPy's version of the operation is computed much more quickly:

```
big_array = rng.random(1000000)
%timeit sum(big_array)
%timeit np.sum(big_array)
```

Minimum and Maximum

Python has built-in min and max functions

```
min(big_array), max(big_array)
```

NumPy's corresponding functions have similar syntax

again operate much more quickly:

```
%timeit min(big_array)
%timeit np.min(big_array)
```

A shorter syntax is to use methods of the array object itself:

```
print(big_array.min(), big_array.max(), big_array.sum())
```

Whenever possible, make sure

using the NumPy version of these aggregates when operating on NumPy arrays!

Multidimensional Aggregates

Data stored in a two-dimensional array:

```
M = rng.integers(0, 10, (3, 4))
print(M)
```

NumPy aggregations will apply across all elements of a multidimensional array:

M.sum()

Find the minimum value within each column by specifying axis=0:

M.min(axis=0)

Find the maximum value within each row:

M.max(axis=1)

The axis keyword specifies the dimension of the array that will be *collapsed*, rather than the dimension that will be returned.

 axis=0 means that axis 0 will be collapsed: for twodimensional arrays, values within each column will be aggregated.

For a simple linear regression model

$$y = \beta_0 + \beta_1 x + u$$

- x = np.random.randint(0, 100, size=(100,))
- y = np.random.randint(0, 100, size=(100,))
- Get OLS estimator $\hat{eta}_1 = rac{\sum (x_i \bar{x})(y_i \bar{y})}{\sum (x_i \bar{x})^2}$

Task: Discrete choice (optional)

The optimal daily studying hours h^st for student type c is given by

$$h^*(c) = rg \max_{h \in \{0,1,\dots,8\}} u(c,h), c \in \{3,5,7\}$$

where $u(c, h) = \log(h) - 0.2(h - c)^2$.

Find the optimal daily studying hours $h_{star}(c)$ for students of type c.

```
def u(c, h):
    return np.log(h+1) - 0.2*(h - c)**2

def h_star(c):
    h_array = np.arange(0, 9)
    max_h = None
    max_utility = -np.inf
    for h in h_array:
        utility = u(c, h)
        if utility > max_utility:
        max h = h
```

return max h

max_utility = utility

```
def h_star2(c):
    h_array = np.arange(0, 9)
```

return h_array[index]

index = np.argmax(u(c, h_array)

Computation on Broadcasting

Arrays:

Introducing Broadcasting

Binary operations are performed on an **element-by-element** basis:

```
import numpy as np

a = np.array([0, 1, 2])
b = np.array([5, 5, 5])
a + b
```

Arrays of different sizes — add a scalar (think of it as a zero-dimensional array) to an array:

a + 5

Higher dimension.

 Observe the result when we add a one-dimensional array to a two-dimensional array:

```
M = np.ones((3, 3))
M

M + a
```

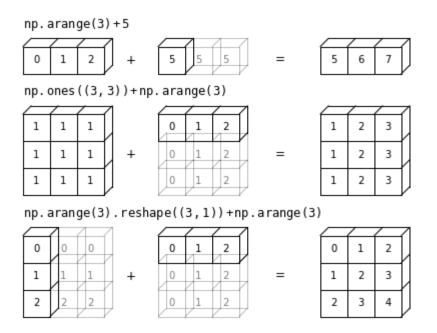
a is stretched, or broadcasted, across the second dimension in order to match the shape of M

Broadcasting of both arrays. Consider the following example:

```
a = np.arange(3)
b = np.arange(3)[:, np.newaxis]

print(a)
print(b)
a + b
```

Stretched or broadcasted one value to match the shape of the other



Broadcasting Example 1

Suppose we want to add a two-dimensional array to a one-dimensional array:

```
M = np.ones((2, 3))
a = np.arange(3)
```

- M.shape is (2, 3)
- a.shape is (3,)

The array a has fewer dimensions, so we pad it on the left with ones:

- M.shape remains (2, 3)
- a.shape becomes (1, 3)

The first dimension disagrees, so we stretch this dimension to match:

- M.shape remains (2, 3)
- a.shape becomes (2, 3)

The shapes now match, and we see that the final shape will be (2, 3):\

M + a

Because the results match, these shapes are compatible. We can see this here:

a + b

Broadcasting Example

Next, let's take a look at an example in which the two arrays are unot compatible:

```
M = np.ones((3, 2))
a = np.arange(3)
```

- M.shape is (3, 2)
- a.shape is (3,)
- We must pad the shape of a with ones:
- M.shape remains (3, 2)
- a.shape becomes (1, 3)
- The first dimension of a is then stretched to match that of M:
- M.shape remains (3, 2)
- a.shape becomes (3, 3)

Now we hit rule 3—the final shapes do not match, so these two arrays are **incompatible**, as we can observe by attempting this operation:

```
M + a
```

Centering an Array

```
rng = np.random.default_rng(seed=1701)
X = rng.random((10, 3))
```

Compute the mean of each column using the mean aggregate across the first dimension:

Xmean = X.mean(0)
Xmean

Center the X array by subtracting the mean (this is a broadcasting operation):

 $X_{centered} = X - Xmean$

Check that the centered array has a mean near zero:

X_centered.mean(0)

To within machine precision, the mean is now zero.

Task

In a virtual world, the probability that a graduate in economics finds a job with a salary of x is respectively

$$\Pr(x = 3000) = 0.1$$

 $\Pr(x = 5000) = 0.3$
 $\Pr(x = 7000) = 0.3$
 $\Pr(x = 9000) = 0.2$
 $\Pr(x = 20000) = 0.1$

Given

```
x = np.array([3000, 5000, 7000, 9000, 20000])
pr = np.array([0.1, 0.3, 0.3, 0.2, 0.1])
```

Find the expected wage.

Task

Multiplication table

```
1×1=1
2×1=2 2×2=4
3×1=3 3×2=6 3×3=9
4×1=4 4×2=8 4×3=12 4×4=16
5×1=5 5×2=10 5×3=15 5×4=20 5×5=25
6×1=6 6×2=12 6×3=18 6×4=24 6×5=30 6×6=36
7×1=7 7×2=14 7×3=21 7×4=28 7×5=35 7×6=42 7×7=49
8×1=8 8×2=16 8×3=24 8×4=32 8×5=40 8×6=48 8×7=56 8×8=64
9×1=9 9×2=18 9×3=27 9×4=36 9×5=45 9×6=54 9×7=63 9×8=72 9×9=81
```

Comparisons,

Masks, and

Boolean Logic

Comparison Operators as Ufuncs

Computation on NumPy Arrays: Universal Functions introduced ufuncs

- + , , * , / : element-wise operations.
- < and > as element-wise ufuncs.
- The result of these comparison: Boolean array.

```
x = np.array([1, 2, 3, 4, 5])
x < 3  # less than
x > 3  # greater than
x ≤ 3  # less than or equal
```

 $x \neq 3$ # not equal x = 3 # equal

 $x \geqslant 3$ # greater than or equal

It is also possible to do an element-wise comparison of two arrays, and to include compound expressions:

```
(2 * x) = (x ** 2)
```

Just as in the case of arithmetic ufuncs, these will work on arrays of any size and shape. Here is a two-dimensional example:

```
rng = np.random.default_rng(seed=1701)
x = rng.integers(10, size=(3, 4))
x
```

Working with Boolean Arrays

The two-dimensional array we created earlier:

print(x)

Counting Entries

To count the number of True entries in a Boolean array, np.count_nonzero is useful:

```
# how many values less than 6?
np.count_nonzero(x < 6)</pre>
```

False is interpreted as 0, and True is interpreted as 1:

```
np.sum(x < 6)
```

The benefit of np.sum is that this summation can be done along rows or columns as well:

```
# how many values less than 6 in each row?
np.sum(x < 6, axis=1)</pre>
```

Checking whether any or all the values are True, we can use (you guessed it) np.any or np.all:

```
# are there any values greater than 8?
np.any(x > 8)

# are there any values less than zero?
np.any(x < 0)

# are all values less than 10?
np.all(x < 10)

# are all values equal to 6?
np.all(x = 6)</pre>
```

np.all and np.any can be used along particular axes as well.

```
# are all values in each row less than 8?
np.all(x < 8, axis=1)</pre>
```

Boolean Arrays as Masks

• To select particular subsets of the data themselves.

Let's return to our x array from before:

Х

Suppose we want an array of all values in the array that are less than 5.

We can obtain a Boolean array for this condition

x < 5

To *select* these values from the array

• a *masking* operation:

```
x[x < 5]
```

Al the values in positions at which the mask array is True s.

Using the Keywords and/or Versus the Operators & and |

- and and or operate on the object as a whole
- δ and | operate on the elements within the object.

```
A = np.array([1, 0, 1, 0, 1, 0], dtype=bool)
B = np.array([1, 1, 1, 0, 1, 1], dtype=bool)
A | B
```

But if you use or on these arrays it will try to evaluate the truth or falsehood of the entire array object, which is not a well-defined value:

raise ValueError
A or B

Similarly, when evaluating a Boolean expression on a given array, you should use | or & rather than or or and:

```
x = np.arange(10)
(x > 4) & (x < 8)
```

Trying to evaluate the truth or falsehood of the entire array will give the same ValueError we saw previously:

```
# raise ValueError
(x > 4) and (x < 8)</pre>
```

Remember this:

- and and or perform a single Boolean evaluation on an entire object
- while & and | perform multiple Boolean evaluations on the content (the individual bits or bytes) of an object.

For Boolean NumPy arrays, the latter is nearly always the desired operation

Fancy Indexing

Before: to access and modify portions of arrays

- using simple indices (e.g., arr[0]),
- slices (e.g., arr[:5])
- and Boolean masks (e.g., arr[arr > 0]).

In this chapter, another style of array indexing

Exploring Fancy Indexing

Fancy indexing

 passing an array of indices to access multiple array elements at once

For example, consider the following array:

```
import numpy as np
rng = np.random.default_rng(seed=1701)

x = rng.integers(100, size=10)
print(x)
```

Suppose we want to access three different elements

[x[3], x[7], x[2]]

Alternatively, we can pass a single list or array of indices to obtain the same result:

```
ind = [3, 7, 4]
x[ind]
```

When using arrays of indices, the shape of the result reflects the shape of the *index arrays*

Fancy indexing also works in multiple dimensions. Consider the following array:

```
X = np.arange(12).reshape((3, 4))
X
```

Like with standard indexing, the first index refers to the row, and the second to the column:

```
row = np.array([0, 1, 2])
col = np.array([2, 1, 3])
X[row, col]
```

Combined Indexing

Fancy indexing can be combined with the other indexing schemes

For example, given the array X:

```
print(X)
```

We can combine fancy and simple indices:

X[2, [2, 0, 1]]

To slicing several rows:

• We can also combine fancy indexing with slicing:

```
X[1:, [2, 0, 1]]
```

```
x = np.arange(10)
i = np.array([2, 1, 8, 4])
x[i] = 99
print(x)
```

Task

Simulate a Gacha game with four different rarities: 999, 99, and 9, each with the following probabilities:

$$Pr(999) = 0.01$$

 $Pr(99) = 0.10$
 $Pr(9) = 0.89$

Perform a simulation of 100 pulls

keeping track of the count for each rarity

Sorting Arrays

Fast Sorting in NumPy: np.sort and np.argsort

The np.sort function is analogous to Python's built-in sorted function

efficiently return a sorted copy of an array:

```
import numpy as np

x = np.array([2, 1, 4, 3, 5])
np.sort(x)
```

Similarly to the sort method of Python lists, you can also sort an array in-place using the array sort method:

```
x.sort()
print(x)
```

A related function is argsort

• returns the *indices* of the sorted elements:

```
x = np.array([2, 1, 4, 3, 5])
i = np.argsort(x)
print(i)
```

The first element of this result gives the index of the smallest element

- the second value gives the index of the second smallest, and so on.
- These indices can then be used (via fancy indexing) to construct the sorted array if desired:

x[i]

Sorting Along Rows or Columns

A useful feature of NumPy's sorting algorithms is the ability to sort along specific rows or columns

using the axis argument. For example:

```
rng = np.random.default_rng(seed=42)
X = rng.integers(0, 10, (4, 6))
print(X)

# sort each column of X
np.sort(X, axis=0)

# sort each row of X
np.sort(X, axis=1)
```

Partial Sorts: Partitioning

To find the *k* smallest values in the array

- the np.partition function.
- np.partition takes an array and a number K
- the result is a new array with the smallest K values to the left of the partition and the remaining values to the right:

```
x = np.array([7, 2, 3, 1, 6, 5, 4])
np.partition(x, 3)
```

Notice that the first three values in the resulting array are the three smallest in the array

- the remaining array positions contain the remaining values.
- Within the two partitions, the elements have arbitrary order.

Similarly to sorting, we can partition along an arbitrary axis of a multidimensional array:

```
np.partition(X, 2, axis=1)
```

Task

GDP data for 5 countries (in billions USD)

```
gdp_data = np.array([2500, 3000, 1500, 4000, 3500])
```

Asian countries indicator

```
asian = np.array([1, 0, 0, 1 0)]
```

- Top gdp among asian countries.
- Top gdp among non-asian countries.

