23T REURES Python N FE
Introduction to

NumPy

B
B
2025

Press Space for next page -

Contents

= Understanding Data Types

= The Basics of NumPy Arrays

= Computation on NumPy Arrays: Universal Functions
» Aggregations: min, max, and Everything in Between
» Computation on Arrays: Broadcasting

= Comparisons, Masks, and Boolean Logic

= Fancy Indexing

= Sorting Arrays

Introduction to
NumPy

Why Numpy
Datasets: fundamentally arrays of numbers.
NumPy (short for Numerical Python)

= T Efficient storage

= 4 manipulation of numerical arrays

Installation

= Go to http://www.numpy.org/ and follow the installation

instructions found there.

$ conda install numpy

= Import NumPy and double-check the version: Demo

http://www.numpy.org/

In terminal

Start jupyter notebook

jupyter lab

In notebook

import numpy
numpy._ version__

By convention, import NumPy using np as an alias:

import numpy as np

Understanding
Data Types in
Python

A Python Integer Is More Than Just an
Integer

= Qverhead involved in storing an integer in Python

= Analogy: & Mail package

C Integer Python Integer
ﬁ 1

PyObject_HEAD

digit |1

PyObject_HEAD is the part of the structure

A Python List Is More Than Just a List

= Holds many Python objects.

L3 True 2 3.0, &4
type(item) for item in L3

This flexibility comes ata $ cost:

= Eachitem in the list must contain its own type, reference

count, and other information.
= In the special case that all variables are of the same type

= much of this information is redundant

The difference between a dynamic-type list and a fixed-type
(NumPy-style) array

Numpy Array Python List
PyObject_HEAD PyObject_HEAD
data > 1 length
dimensions 2 items -> 0x310718
. 3 0x310748
strides 4
0x310730
> 0x310760
6 0x310700
/ 0x3106b8
8 0x3106d0
0x3106e8

Fixed-type NumPy-style arrays are much more ., efficient for
storing and manipulating data.

Creating Arrays from Python Lists

We'll start with the standard NumPy import, under the alias
np :

Demo

import numpy as np

Use np.array to create arrays from Python lists:

np.array(l1, 4, 2, 5, 3

NumPy arrays can only contain data of the | same type.

= If the types do not match, NumPy will upcast them
according to its type promotion rules

= Integers are upcast to floating point:

np.array(13.14, 4, 2, 3

Explicitly set the data type of the resulting array

= Usethe dtype keyword:

np.array([1, 2, 3, 4 dtype=np.float32

NumPy arrays can be . multidimensional

Initializing a multidimensional array using a list of lists:

np.array([range(i, i + 3) for i in [2, 4, 6

The inner lists are treated as rows of the resulting two-
dimensional array.

Creating Arrays from Scratch
For larger arrays, it is more efficient

= To create arrays from scratch using routines built into

NumPy.

Here are several examples:

np.zeros(10, dtype=int
np.ones((3, 5 dtype=float

np.full((3, 5 3.14

> Number Series

Create an array filled with a linear sequence

starting at @0, ending at 20, stepping by 2

(this is similar to the built-in range function)
np.arange(0, 20, 2)

Create an array of five values evenly spaced between 0 and 1
np.linspace(0, 1, 5)

+» Random Array

Create a 3x3 array of uniformly distributed
pseudorandom values between 0 and 1
np.random.random((3, 3))

Create a 3x3 array of normally distributed pseudorandom
values with mean @ and standard deviation 1
np.random.normal(o, 1, (3, 3))

Create a 3x3 array of pseudorandom integers in the interval [0, 10)
np.random.randint(0, 10, (3, 3))

. Special Matrix

Create a 3x3 identity matrix
np.eye(3)

Create an uninitialized array of three integers; the values will be
whatever happens to already exist at that memory location
np.empty(3)

The Basics of
NumPy Arrays

Data manipulation in Python -> NumPy array ;> manipulation:
= Pandas Part 3 are built around the NumPy array

NumPy array manipulation

subarrays

split

reshape

join the arrays.

NumPy Array Attributes

NumPy’s random number generator

= seed with a set value in order
= ensure that the same random arrays are generated each

time this code is run:

import numpy as np
rng np.random.default_rng(seed=1701

Define random arrays of

= One, two, and three dimensions.

x1 rng.integers(10, size=6
X2 rng.integers(10, size=(3, 4
x3 rng.integers(10, size=(3, 4, 5

Recall

How to generate random integers between 0 and 10 using
‘np.random’.

Each array has attributes

print
print
print
print

X3 ndim:
x3 shape:
X3 size:
dtype:

x3
x3
x3
x3

ndim (the number of dimensions)
shape (the size of each dimension)
size (the total size of the array)

dtype (the type of each element):

ndim
shape
size
dtype

Array Indexing: Accessing Single
Elements

The i value (counting from zero) can be accessed by
specifying the desired index in square brackets

x1
X110
X1[4

To index from the end of the array, you can use negative
indices:

x1[-1
x1[-2

Multidimensional array

= using a comma-separated (row, column) tuple:

X2
x2[0,0
x2[2,0
x2[2,-1

Values can also be ; modified using any of the preceding
index notation:

X210, 0 12
X2

o Task

Generate a matrix m of integers (two-dimensional array) with
shape (5, 5)

= forelementm;; € mat (i,5), m;; =i*j

m np.zeros((5,5
for i in range(5

for j in range(5

mli,j i* 3

Caution: NumPy arrays have a fixed type.

= jnsert a floating-point value into an integer array

= the value will be 7 silently truncated

Array Slicing: Accessing Subarrays

Access subarrays with the slice notation

= the colon (:) character.

x[start:stop:step

Default values start=0, stop=<size of dimension>,
step=1.

a np.array(11,2,3
al0:2

One-Dimensional Subarrays

x1
x1[:3
x1[3
x1[{1:4
x1
x1[1::2

? Question: negative step

x1 =1l
X1[4::-2

Multidimensional Subarrays

X2

x2|[:2 3
x2[:3 2

X2 -1 =il

Accessing array rows and columns

Accessing single rows or columns of an array.

= Single colon(:):

X2 0
x2[0

The ¢ empty slice can be omitted for a more compact syntax:

x2[0

Subarrays as] No-Copy Views

NumPy array slices are returned as views

= rather than copies of the array data.

print(x2

Let's extract a 2 X 2 subarray from this:

x2_sub x2[:2 2
print(x2_sub

Now if we modify this subarray, we'll see that the original array
is changed! Observe:

x2_subl0, 0 99
print(x2_sub
print(x2

Creating Copies of Arrays
Explicitly copy the data within an array or a subarray.

= copy method:

Xx2_sub_copy x2[:2 2].copy
print(x2_sub_copy

If we now modify this subarray, the original array is not
touched:

x2_sub_copyl0, 0 42
print(x2_sub_copy
print(x2

‘» Task

Find all even numbers under 100 as a NumPy array.

numbers np.arange(100
numbers 2

Reshaping of Arrays
Put the numbers 1 through 9ina 3 x 3 grid:

grid np.arange(1, 10).reshape(3, 3
print(grid

= reshape method will return a no-copy view of the initial

array.

> One-dimensional array to row or column matrix

X np.array((1, 2, 3
x.reshape((1, 3
x.reshape((3, 1

Shorthand for this is to use =1 np.newaxis in the slicing
syntax:

x[np.newaxis
X np.newaxis

Array Concatenation and Splitting
= Combine multiple arrays into one

= Split a single array into multiple arrays.

Concatenation of Arrays

= np.concatenate
= np.vstack

= and np.hstack

np.concatenate takes a tuple or list of arrays as its first
argument, as you can see here:

X np.array(l1, 2, 3
y np.array([3, 2, 1
np.concatenate(|x, y

You can also concatenate more than two arrays at once:

z np.array([99, 99, 99
print(np.concatenate([x, vy, z

And it can be used for two-dimensional arrays:

grid np.array([[1, 2, 3
4

np.concatenate([grid, grid

np.concatenate([grid, grid axis=1

Clearer:
= np.vstack (vertical stack)
= np.hstack (horizontal stack) functions:

np.vstack([x, grid

y np.array 99
99
np.hstack([grid, vy

Splitting of Arrays

= np.split

= np.hsplit

= np.vsplit

X 1y, 2, 3, 99, 99, 3, 2, i

x1, x2, x3 np.split(x, [3, 5
print(x1, x2, x3

The related functions np.hsplit and np.vsplit are similar:

grid np.arange(16).reshape((4, 4
grid

upper, lower = np.vsplit(grid, [2])
print(upper)
print(lower)

left, right = np.hsplit(grid, [2])
print(left)
print(right)

‘s Task

import numpy as np

inflation_data = np.array([

2odl, 22 208, Zolh; 209, 200, 27, 2.8, 2.9, 3.0, 3o, o2,

2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0, 0.9,

0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0, -0.1, -0.2, -0.3,

=0ty =05, =06, =07, =0.8, =09, =0, =i.i, =l.2, =il.8, =i.&, =i

D

= Extract data for the third year (25 to 36)

third_year_inflation_data = inflation_datal[24:36]

= Split data to years (12, 24, 36)

np.split(inflation_data, [12, 24, 36])

Computation on
NumPy Arrays:
Universal
Functions

NumPy arrays can be very fast, or it can be very slow.

= making it fast is to use vectorized operations

= implemented through NumPy’s universal functions (ufuncs)

The Slowness of Loops
Situations where many small operations are being repeated

= |ooping over arrays to operate on each element.

For example,

= an array of values

= compute the reciprocal of each.

nums np.array(l1, 2, 3

A straightforward approach might look like this:

for i in range(len(values
output[i 1.0 / values|i

Benchmark this with IPython’s %timeit magic

big_array = rng.integers(1l, 100, size=1000000
%timeit compute_reciprocals(big_array

Introducing Ufuncs

NumPy provides a vectorized operation.

Compare the results of the following two operations:

print(compute_reciprocals(values
print(1.0 / values

Looking at the execution time for our big array, we see that it
completes orders of magnitude faster than the Python loop:

%timeit (1.0 / big_array

Operate between two arrays:

np.arange(5) / np.arange(1, 6

Any time you see such a loop in a NumPy script

= (¢ replaced with a vectorized expression

Exploring NumPy’s Ufuncs
Array Arithmetic

X np.arange(4

print("x = X
print("x + 5 = X + 5
print("x - 5 = X -5
print("x * 2 = X * 2
print("x / 2 =", x / 2
print("x // 2 =", x // 2

= A %% operator for exponentiation,

= A % operator for modulus:

print("-x = -X
print("x *x 2 = X *% 2
print("x % 2 = X % 2

The standard order of operations is respected:

-(0.5%x + 1) *x 2

The following table lists the arithmetic operators implemented in NumPy:

Operator Equivalent ufunc Description

+ np.add Addition(e.g., 1 + 1 =2)

- np.subtract Subtraction(e.g., 3 -2 = 1)

= np.negative Unary negation (e.g., -2)

* np.multiply Multiplication (e.g., 2 * 3 = 6)

/ np.divide Division(e.g., 3 /2 = 1.5)

// np.floor_divide Floor division (e.g., 3 // 2 = 1)
*% np.power Exponentiation (e.g., 2 *x 3 = 8)

% np.mod Modulus/remainder (e.g., 9 % 4 = 1)

Absolute Value

Just as NumPy understands Python'’s built-in arithmetic
operators,

= it also understands Python's built-in absolute value function:

X np.array(l-2, -1, 0, 1, 2
abs(x

The corresponding NumPy ufuncis np.absolute , which is also
available under the alias np.abs :

np.absolute(x
np.abs(x

This ufunc can also handle complex data, in which case it
returns the magnitude:

X np.array([3 - 43, 4 - 35, 2 + 03, 0 + 1j
np.abs(x

Trigonometric Functions
Start by defining an array of angles:

theta np.linspace(0, np.pi, 3

Now we can compute some trigonometric functions on these
values:

print("theta = theta

print("sin(theta) np.sin(theta
print("cos(theta) np.cos(theta
print("tan(theta) np.tan(theta

Inverse trigonometric functions are also available:

X = [_11 @1 1]

print("x =", x)
print("arcsin(x) = ", np.arcsin(x))
print("arccos(x) = ", np.arccos(x))

print("arctan(x) , np.arctan(x))

Exponents and Logarithms

Other common operations available in NumPy ufuncs are the
exponentials:

X 1, 2, 3

print("x = X
print("e”x =", np.exp(x
print("2”%x =", np.exp2(x

print("3"x np.power(3., x

The basic np.log gives the natural logarithm

= base-2 logarithm or the base-10 logarithm

X 1, 2, 4, 10

print("x = X
print("ln(x) =", np.log(x
print("log2(x) =", np.log2(x
print("loglo(x) =", np.logld(x

Some specialized versions that are useful for maintaining
precision with very small input:

X 0, 0.001, 0.01, 0.1
print("exp(x) - 1 =", np.expml(x
print("log(1 + x) =", np.loglp(x

When x is very small, these functions give more precise values
than if theraw np.log or np.exp were to be used.

Aggregations: min, max, and
Everything in Between

A first step in exploring any dataset

= Summary statistics
= Mean and standard deviation

= Median, minimum and maximum, quantiles, etc.

NumPy has fast built-in aggregation functions for working on
arrays; we'll discuss and try out some of them here.

Summing the Values in an Array

Your # lucky numbers

Or random numbers

import numpy as np
rng np.random.default_rng

L rng.random(100
sum(L

NumPy's sum function, and the result is the same in the
simplest case:

np.sum(L

NumPy’s version of the operation is computed much more
quickly:

big_array = rng.random(1000000
%timeit sum(big_array
%timeit np.sum(big_array

Minimum and Maximum

Python has built-in min and max functions

min(big_array), max(big_array

NumPy’s corresponding functions have similar syntax

= again operate much more quickly:

%timeit min(big_array
%timeit np.min(big_array

A shorter syntax is to use methods of the array object itself:
print(big_array.min big_array.max big_array.sum
Whenever possible, make sure

= using the NumPy version of these aggregates when

operating on NumPy arrays!

Multidimensional Aggregates
Data stored in a two-dimensional array:

M = rng.integers(0, 10, (3, 4
print(M

NumPy aggregations will apply across all elements of a
multidimensional array:

M. sum

Find the minimum value within each column by specifying
axis=0 :

M.min(axis=0

Find the maximum value within each row:

M.max(axis=1

The axis keyword specifies the dimension of the array that

will be collapsed, rather than the dimension that will be
returned.

= axis=0 means that axis 0 will be collapsed: for two-

dimensional arrays, values within each column will be

aggregated.

Task: OLS

For a simple linear regression model
y=Po+ bz +u

np.random.randint(@, 100, size=(100,))

"X

np.random.randint(0@, 100, size=(100,))

"y

= Get OLS estimator 51 = Z%(w)(x) 1)

Task: Discrete choice (optional)

The optimal daily studying hours h* for student type c is given
by

h*(c) = argmax u(c,h),c € {3,5,7}
he{0,1,...,8}

where u(c, h) = log(h) — 0.2(h — ¢)°.

Find the optimal daily studying hours h_star(c) for students
of type c.

def u(c, h):
return np.log(h+1) - 0.2x(h - c)*%2

def h_star(c): def h_star2(c):
h_array = np.arange(0, 9) h_array = np.arange(0, 9)
max_h = None index = np.argmax(u(c, h_array)
max_utility = -np.inf return h_array[index]

for h in h_array:
utility = u(c, h)
if utility > max_utility:
max_h = h
max_utility = utility
return max_h

Computation on
Arrays:
Broadcasting

Introducing Broadcasting

Binary operations are performed on an element-by-element
basis:

import numpy as np

a np.array(l0, 1, 2
b = np.array([5, 5, 5
a+b

Arrays of different sizes — add a scalar (think of it as a zero-
dimensional array) to an array:

a + 5

Higher dimension.

= Observe the result when we add a one-dimensional array to

a two-dimensional array:

M np.ones((3, 3
M

a is stretched, or broadcasted, across the second dimension in
order to match the shape of M

Broadcasting of both arrays. Consider the following example:

a np.arange(3
b np.arange(3 np.newaxis

print(a
print(b

Stretched or broadcasted one value to match the shape of the
other

np.arange(3)+5

——— - —————
0|12 + 5 = 516 |7
s |
np.ones{{3, 3) J+np. arange(3)
1|1 |1 0| 1|2 12| 3
1|1 |1 + o L [jz]] = 12| 3
1|1 |1 1|]2 | 1|23
np.arange(3).reshape((3, 1)) +np.arange(3)
B —
0 0|1 |2 0|12
S 11 "
1|t 1 + 1 || = 12| 3
2]z | 1 | 2| 3| 4
5 i 4

Broadcasting Example 1

Suppose we want to add a two-dimensional array to a one-
dimensional array:

M np.ones((2, 3
a np.arange(3

= M.shape is (2, 3)

= a.shape is (3,)

The array a has fewer dimensions, so we pad it on the left
with ones:

= M.shape remains (2, 3)

= a.shape becomes (1, 3)

The first dimension disagrees, so we stretch this dimension to
match:

= M.shape remains (2, 3)

= a.shape becomes (2, 3)

The shapes now match, and we see that the final shape will be
(2, 3):\

M+ a

Because the results match, these shapes are compatible. We
can see this here:

Broadcasting Example

Next, let's take a look at an example in which the two arrays are
(2 not compatible:

M np.ones((3, 2
a np.arange(3

= M.shape is (3, 2)

= a.shape is (3,)
We must pad the shape of a with ones:

= M.shape remains (3, 2)

= a.shape becomes (1, 3)
The first dimension of a is then stretched to match that of M :

= M.shape remains (3, 2)

= a.shape becomes (3, 3)

Now we hit rule 3—the final shapes do not match, so these two
arrays are incompatible, as we can observe by attempting this
operation:

M+ a

Centering an Array

rng np.random.default_rng(seed=1701
X rng.random((10, 3

Compute the mean of each column using the mean aggregate
across the first dimension:

Xmean X.mean(0
Xmean

Center the X array by subtracting the mean (thisis a
broadcasting operation):

X_centered X - Xmean

Check that the centered array has a mean near zero:

X_centered.mean(0

To within machine precision, the mean is now zero.

Task

In a virtual world, the probability that a graduate in economics
finds a job with a salary of x is respectively

Pr(z = 3000) = 0.1
Pr(z = 5000) = 0.3
Pr(z = 7000) = 0.3
Pr(z = 9000) = 0.2

Given

x = np.array([3000, 5000, 7000, 9000, 20000])
pr = np.array([0.1, 0.3, 0.3, 0.2, 0.1])

Find the expected wage.

Task

Multiplication table

1x1=1

2x1=2 2x2=4

3x1=3 3x2=6 3x3=9

4x1=4 4x2=8 4x3=12 4x4=16

5x1=5 5x2=10 5x3=15 5x4=20 5x5=25

6x1=6 6x2=12 6x3=18 6x4=24 6x5=30 6x6=36

7x1=7 7x2=14 7x3=21 7x4=28 7x5=35 7x6=42 7x7=49

8x1=8 8x2=16 8x3=24 8x4=32 8x5=40 8x6=48 8x7=56 8x8=64

9x1=9 9x2=18 9x3=27 9x4=36 9x5=45 9x6=54 9x7=63 9x8=72 9x9=81

Comparisons,
Masks, and
Boolean Logic

Comparison Operators as Ufuncs

Computation on NumPy Arrays: Universal Functions introduced
ufuncs

= +, -, %, /:element-wise operations.
= < and > aselement-wise ufuncs.

= The result of these comparison: Boolean array.

X X X X X X X
I % wvum,mVv A
w w w w

np.array([1, 2, 3, 4, 5])

3 # less than

3 # greater than

less than or equal

greater than or equal
not equal

equal

It is also possible to do an element-wise comparison of two
arrays, and to include compound expressions:

2 * x) = (X *x 2

Just as in the case of arithmetic ufuncs, these will work on
arrays of any size and shape. Here is a two-dimensional
example:

rng np.random.default_rng(seed=1701
X = rng.integers(10, size=(3, 4
X

Working with Boolean Arrays
The two-dimensional array we created earlier:

print(x

Counting Entries

To count the number of True entries in a Boolean array,
np.count_nonzero is useful:

np.count_nonzero(x < 6

False isinterpreted as 0, and True isinterpretedas 1:

np.sum(x < 6

The benefit of np.sum is that this summation can be done
along rows or columns as well:

np.sum(x < 6, axis=1

Checking whether any or all the values are True , we can use
(you guessed it) np.any or np.all:

np.any(x > 8

np.any(x < 0

np.all(x < 10

np.all(x = 6

np.all and np.any can be used along particular axes as well.

np.all(x < 8, axis=1

Boolean Arrays as Masks

= To select particular subsets of the data themselves.
Let's return to our x array from before:

X

Suppose we want an array of all values in the array that are less
than 5.

= We can obtain a Boolean array for this condition

X <5

To select these values from the array

= 3 masking operation:

X[x <5

Al the values in positions at which the mask array is True s.

Using the Keywords and/or Versus
the Operators & and |

= and and or operate on the object as a whole

= & and | operate on the elements within the object.

A np.array([1, 0, 1, 0, 1, 0 dtype=bool
B np.array([1, 1, 1, 0, 1, 1 dtype=bool
A| B

But if you use or on these arrays it will try to evaluate the

truth or falsehood of the entire array object, which is not a well-
defined value:

A or B

Similarly, when evaluating a Boolean expression on a given
array, you should use | or & rather than or or and:

X np.arange(10
X >4) & (x <8

Trying to evaluate the truth or falsehood of the entire array will
give the same ValueError we saw previously:

X > 4) and (x < 8

Remember this:

= and and or perform a single Boolean evaluation on an
entire object

= while § and | perform multiple Boolean evaluations on
the content (the individual bits or bytes) of an object.

For Boolean NumPy arrays, the latter is nearly always the
desired operation

Fancy Indexing

Before: to access and modify portions of arrays

» using simple indices (e.g., arr[0]),
» slices(e.qg., arr[:5])

= and Boolean masks (e.qg., arr[arr > 0]).

In this chapter, another style of array indexing

Exploring Fancy Indexing
Fancy indexing

= passing an array of indices to access multiple array elements

at once

For example, consider the following array:

import numpy as np
rng = np.random.default_rng(seed=1701)

X = rng.integers(100, size=10)
print(x)

Suppose we want to access three different elements

X3 X7 X2

Alternatively, we can pass a single list or array of indices to
obtain the same result:

ind 3, 7, 4
x[ind

When using arrays of indices, the shape of the result reflects
the shape of the index arrays

ind np.array 3, 7
4
x[ind

Fancy indexing also works in multiple dimensions. Consider the
following array:

X np.arange(12).reshape((3, 4
X

Like with standard indexing, the first index refers to the row,
and the second to the column:

row np.array(l0, 1, 2
col np.array([2, 1, 3
X[lrow, col

Combined Indexing

Fancy indexing can be combined with the other indexing
schemes

For example, given the array X:

print(X

We can combine fancy and simple indices:

To slicing several rows:

= We can also combine fancy indexing with slicing:

XL1 2, 0, 1

X = np.arange(10)
i = np.array([2, 1, 8, 4])
x[i] = 99

print(x)

Task

Simulate a Gacha game with four different rarities: 999, 99, and
9, each with the following probabilities:

Pr(999) = 0.01
Pr(99) = 0.10
Pr(9) = 0.89

Perform a simulation of 100 pulls

= keeping track of the count for each rarity

Sorting Arrays

Fast Sorting in NumPy: np.sort and
np.argsort

The np.sort function is analogous to Python’s built-in
sorted function

= efficiently return a sorted copy of an array:
import numpy as np

X np.array(l2, 1, 4, 3, 5
np.sort(x

Similarly to the sort method of Python lists, you can also sort
an array in-place using the array sort method:

X.sort
print(x

A related function is argsort

= returns the indices of the sorted elements:

X np.array(l2, 1, 4, 3, 5
i = np.argsort(x
print(i

The first element of this result gives the index of the smallest
element

= the second value gives the index of the second smallest, and
So on.

= These indices can then be used (via fancy indexing) to
construct the sorted array if desired:

x[1i

Sorting Along Rows or Columns

A useful feature of NumPy'’s sorting algorithms is the ability to
sort along specific rows or columns

= using the axis argument. For example:

rng np.random.default_rng(seed=42
X = rng.integers(0, 10, (4, 6
print(X

np.sort(X, axis=0

np.sort(X, axis=1

Partial Sorts: Partitioning

To find the k smallest values in the array

= the np.partition function.
= np.partition takes an array and a number K
= the resultis a new array with the smallest K values to the left

of the partition and the remaining values to the right:

X = np.array((7, 2, 3, 1, 6, 5, 4
np.partition(x, 3

Notice that the first three values in the resulting array are the
three smallest in the array

= the remaining array positions contain the remaining values.

= Within the two partitions, the elements have arbitrary order.

Similarly to sorting, we can partition along an arbitrary axis of a
multidimensional array:

np.partition(X, 2, axis=1

Task
GDP data for 5 countries (in billions USD)

gdp_data np.array([2500, 3000, 1500, 4000, 3500

Asian countries indicator

asian = np.array([1, 0, 0, 1 0)

= Top gdp among asian countries.

= Top gdp among non-asian countries.

END

